Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(1,3-Dioxoisochroman-4-vlidene)hydroxymethyl]benzonitrile

Rita Kakou-Yao,^a* Abdoulaye Djande,^b Leopold Kabore,^b Adama Saba^b and Jean Pierre Avcard^c

^aLaboratoire de Cristallographie et de Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidian 22. Cote d'Ivoire. ^bLaboratoire de Chimie Bioorganique et Phytochimie, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso, and ^cLaboratoire de Physique des Interactions Ioniques et Moléculaire, Université de Provence CNRS Centre de Saint Jérôme, Case 252, 13397 Marseille Cedex 20 France

Correspondence e-mail: yr_kakou@yahoo.fr

Received 6 September 2007; accepted 15 September 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.125; data-to-parameter ratio = 11.8.

The crystal structure of the title compound, C₁₇H₉NO₄, shows that the exocyclic enolic tautomer exists as it has been observed in solution. The structure is stabilized by intramolecular $O-H \cdots O$ hydrogen bonding.

Related literature

For related literature, see: Saba et al. (1996); Saba (1996); Schenckenburger (1965). For related structures, see: Kakou-Yao et al. (1999a,b); Kakou-Yao, Saba, Ebby, Pierrot & Aycard (1999).

OH O

Experimental

Crystal data

Ν

h

$C_{17}H_9NO_4$	V = 1326.77 (7) Å ³
$A_r = 291.26$	Z = 4
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 9.9944 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
= 9.3091 (3) Å	T = 294 K
= 14.3752 (5) Å	$0.40 \times 0.40 \times 0.40 \mbox{ mm}$
$B = 97.245 \ (1)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer	3886 independent reflections
Absorption correction: none	2342 reflections with $I > 3\sigma(I)$
4113 measured reflections	$R_{\rm int} = 0.041$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	199 parameters
$vR(F^2) = 0.125$	H-atom parameters not refined
S = 0.91	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
2342 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O20-H20···O19	0.87	1.74	2.523 (2)	149

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

We thank Laboratoire de Spectropôle, Université Paul Cézanne, Marseille, France.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN3062).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kakou-Yao, R., Saba, A., Ebby, N. & Aycard, J. P. (1999a). Z. Kristallogr. New Cryst. Struct. 214, 483-484.
- Kakou-Yao, R., Saba, A., Ebby, N. & Aycard, J. P. (1999b). Z. Kristallogr. New Cryst. Struct. 214, 485-486.
- Kakou-Yao, R., Saba, A., Ebby, N., Pierrot, M. & Aycard, J. P. (1999). Acta Cryst. C55, 1591-1593.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Saba, A. (1996). Thèse d'état ès Sciences Physiques, Ouagadougou, Burkina Faso.
- Saba, A., Sib, F. S., Faure, R. & Aycard, J. P. (1996). Spectrosc. Lett. 29, 1649-1657
- Schenckenburger, J. (1965). Arch. Pharm. 298, 411-423.

supplementary materials

Acta Cryst. (2007). E63, o4275 [doi:10.1107/S1600536807045357]

4-[(1,3-Dioxoisochroman-4-ylidene)hydroxymethyl]benzonitrile

R. Kakou-Yao, A. Djande, L. Kabore, A. Saba and J. P. Aycard

Comment

It has been previously shown by infrared analysis (Schenckenburger, 1965) that, in solid state, the isochroman-1,3 dione has a dicarbonyl structure. In solution this compound, revealed the presence of an exocyclic enolic tautomer (Saba *et al.*, 1996). Structural determination of the same compound by (Kakou-Yao *et al.*,1999*a*,b; Kakou-Yao, Saba, Ebby, Pierrot & Aycard, 1999) has shown also an enolic form in the solid. In addition, if the 4-aroyl isochroman-1,3-diones exhibits fluorescence property, the *para* substituted derivatives does not present this property when the group in *para* position is a high electron withdrawing group (NO2 or CN). To understand the tautomeric problem and its effects on fluorescence properties, the synthesis of the title compound has been carried out by making *para* substitution on the benzyl cycle of the isochroman-1,3-dione molecule.

The molecular structure of the title compound, 4-(α -hydroxy-*p*-cyanobenzyl)isochroman-1,3-dione, shows the same enolic tautomer as the nitro and fuoro compounds already reported (Kakou-Yao *et al.*, 1999*a*,b; Kakou-Yao, Saba, Ebby, Pierrot & Aycard, 1999). This tautomeric form is confirmed by the distances C3—O19 = 1.216 (2)Å and C11—O20 =1.323 (2)Å which are intermediate values between C*sp*₃—O (1.42 Å) group and anhydride of carbonylform (1.16 Å). There is a strong intramolecular O—H···O bond which stabilizes the conformation (Table 1).

The two fused six membered rings are nearly planar with the largest deviation being 0.148 at C3. They make a dihedral angle of 54.07 (4)° with the cyanobenzyl plane. The pseudo six-membered ring formed by the intramolecular O—H···O bond is roughly planar and is twisted by 17.61 (4)° with the two fused rings plane.

In conclusion, the results of our investigation show that the nitro, fluoro and cyano *para* substituted compounds have the same enolic tautomer forms. This form may be induced by the formation of the strong intramolecular O—H···O hydrogen bond.

Experimental

The compound is obtained from a previously described procedure (Saba, 1996) by reaction of 200 ml of THF with 40 mmol of chlorure of benzoyle, 0.12 mol of triethylamine and HCl diluted solution. The organic phase is washed, neutralized, dried and evaporated. The compound was crystallized in CH_2Cl_2 .

Refinement

H atoms attached to carbon are treated as riding on their parent C atoms. H20 is obtained by F iourier difference but treated as riding on the parent O atom.

Figures

Fig. 1. Molecular view showing the atol-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitary radii. Hydrogen bond is shown as dashed line.

4-[(1,3-Dioxoisochroman-4-ylidene)hydroxymethyl]benzonitrile

Crystal d	data
-----------	------

C ₁₇ H ₉ N ₁ O ₄	$F_{000} = 600$
$M_r = 291.26$	$D_{\rm x} = 1.458 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 21043 reflections
<i>a</i> = 9.9944 (3) Å	$\theta = 2.1 - 30.2^{\circ}$
b = 9.3091 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 14.3752 (5) Å	T = 294 K
$\beta = 97.2450 \ (10)^{\circ}$	Cubic, yellow
V = 1326.77 (7) Å ³	$0.40\times0.40\times0.40~mm$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2342 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 294 K	$\theta_{\text{max}} = 30.2^{\circ}$
φ scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: none	$h = 0 \rightarrow 14$
4113 measured reflections	$k = 0 \rightarrow 13$
3886 independent reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring
Least-squares matrix: full	H-atom parameters not refined
	Chebychev polynomial [Watkin, D. (1994). Acta Cryst. A50, 411–437. Prince, E. (1982). Mathem- atical Techniques in Crystallography and Materials
$R[F^2 > 2\sigma(F^2)] = 0.050$	Science Springer-Verlag, New York.] [weight] = $1.0/$ [$A_0*T_0(x) + A_1*T_1(x) + A_{n-1}]*T_{n-1}(x)$] where A_i are the Chebychev coefficients listed be- low and $x = F/F$ max Method = Robust Weighting

	(Prince, 1982) W = [weight] * [1-(deltaF/6*sig-
	$maF)^{2}]^{2}$ A _i are: 333. 498. 301. 108.
$wR(F^2) = 0.125$	$(\Delta/\sigma)_{\text{max}} = 0.0004$
<i>S</i> = 0.91	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
2342 reflections	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
199 parameters	Extinction correction: None

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

O2 0.50626 (15) -0.04093 (16) 0.61652 (10) 0.0649 O20 0.84144 (19) -0.11007 (16) 0.80705 (11) 0.0770 C17 0.76804 (17) 0.2051 (2) 0.91579 (12) 0.0500 C15 0.95922 (17) 0.28840 (19) 1.01898 (11) 0.0479 O18 0.33737 (15) 0.0948 (2) 0.55713 (13) 0.0874 C5 0.72805 (16) 0.32456 (17) 0.71405 (11) 0.0431 C10 0.65110 (15) 0.20037 (17) 0.69253 (10) 0.0393 C14 1.04403 (18) 0.2052 (2) 0.97158 (14) 0.0572 C4 0.69481 (17) 0.05562 (17) 0.72106 (11) 0.0453 C6 0.68116 (18) 0.45734 (18) 0.68391 (13) 0.0499 C11 0.79395 (19) 0.02193 (19) 0.79341 (13) 0.0569 N22 1.0467 (2) 0.4419 (2) 1.16293 (14) 0.0748 C7 0.55762 (19) 0.4727 (2) 0.62919 (15) 0.5933 C12 0.85219 (17) <th></th> <th>x</th> <th>У</th> <th>Ζ</th> <th>$U_{\rm iso}*/U_{\rm eq}$</th>		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O20 0.84144 (19) -0.11007 (16) 0.80705 (11) 0.0770 C17 0.76804 (17) 0.2051 (2) 0.91579 (12) 0.0500 C15 0.95922 (17) 0.28840 (19) 1.01898 (11) 0.0479 O18 0.33737 (15) 0.0948 (2) 0.55713 (13) 0.0874 C5 0.72805 (16) 0.32456 (17) 0.71405 (11) 0.0431 C10 0.65110 (15) 0.20037 (17) 0.69253 (10) 0.0393 C14 1.04403 (18) 0.2052 (2) 0.97158 (14) 0.0572 C4 0.69481 (17) 0.05562 (17) 0.72106 (11) 0.0453 C6 0.68116 (18) 0.45734 (18) 0.68391 (13) 0.0499 C11 0.79395 (19) 0.2193 (19) 0.79341 (13) 0.0509 N22 1.0467 (2) 0.4119 (2) 1.16293 (14) 0.0748 C7 0.55762 (19) 0.4727 (2) 0.62919 (15) 0.593 C12 0.85219 (17) 0.11981 (19) 0.86907 (11) 0.0470 C8 0.48183 (18)	O2	0.50626 (15)	-0.04093 (16)	0.61652 (10)	0.0649
C170.76804 (17)0.2051 (2)0.91579 (12)0.0500C150.95922 (17)0.28840 (19)1.01898 (11)0.0479O180.33737 (15)0.0948 (2)0.55713 (13)0.0874C50.72805 (16)0.32456 (17)0.71405 (11)0.0431C100.65110 (15)0.20037 (17)0.69253 (10)0.0393C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0433C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.6105 (13)0.583O190.6651 (2)-0.0640 (2)0.67100 (13)0.0583O190.6659 (2)-0.0640 (2)0.67100 (13)0.588*H50.81330.31770.74920.6613*H141.14050.20770.99020.6668*H60.7339 <t< td=""><td>O20</td><td>0.84144 (19)</td><td>-0.11007 (16)</td><td>0.80705 (11)</td><td>0.0770</td></t<>	O20	0.84144 (19)	-0.11007 (16)	0.80705 (11)	0.0770
C150.95922 (17)0.28840 (19)1.01898 (11)0.0479O180.33737 (15)0.0948 (2)0.55713 (13)0.0874C50.72805 (16)0.32456 (17)0.71405 (11)0.0431C100.65110 (15)0.20037 (17)0.69253 (10)0.0393C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0433C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.1196 (2)0.89771 (13)0.0564C30.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.444722 (19)0.0937 (2)0.60105 (13)0.583O190.6651 (2)-0.18811 (16)0.67563 (13)0.8587H30.81330.31770.74920.0513*H41.14050.20770.99020.6668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.5659 <td< td=""><td>C17</td><td>0.76804 (17)</td><td>0.2051 (2)</td><td>0.91579 (12)</td><td>0.0500</td></td<>	C17	0.76804 (17)	0.2051 (2)	0.91579 (12)	0.0500
O180.33737 (15)0.0948 (2)0.55713 (13)0.0874C50.72805 (16)0.32456 (17)0.71405 (11)0.0431C100.65110 (15)0.20037 (17)0.69253 (10)0.0393C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0453C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.6105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0858*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C15	0.95922 (17)	0.28840 (19)	1.01898 (11)	0.0479
C50.72805 (16)0.32456 (17)0.71405 (11)0.0431C100.65110 (15)0.20037 (17)0.69253 (10)0.0393C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0453C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H441.14050.20770.99020.6668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690* <td>O18</td> <td>0.33737 (15)</td> <td>0.0948 (2)</td> <td>0.55713 (13)</td> <td>0.0874</td>	O18	0.33737 (15)	0.0948 (2)	0.55713 (13)	0.0874
C100.65110 (15)0.20037 (17)0.69253 (10)0.0393C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0453C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.6105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.6090*H131.04720.06190.86570.0672*	C5	0.72805 (16)	0.32456 (17)	0.71405 (11)	0.0431
C141.04403 (18)0.2052 (2)0.97158 (14)0.0572C40.69481 (17)0.05562 (17)0.72106 (11)0.0453C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.6105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0609*H131.04720.06190.86570.0672*	C10	0.65110 (15)	0.20037 (17)	0.69253 (10)	0.0393
C40.69481 (17)0.05562 (17)0.72106 (11)0.0453C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.6668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0600*H131.04720.06190.65120.0619	C14	1.04403 (18)	0.2052 (2)	0.97158 (14)	0.0572
C60.68116 (18)0.45734 (18)0.68391 (13)0.0499C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C4	0.69481 (17)	0.05562 (17)	0.72106 (11)	0.0453
C110.79395 (19)0.02193 (19)0.79341 (13)0.0509N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0609*H131.04720.06190.86570.0672*	C6	0.68116 (18)	0.45734 (18)	0.68391 (13)	0.0499
N221.0467 (2)0.4419 (2)1.16293 (14)0.0748C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C11	0.79395 (19)	0.02193 (19)	0.79341 (13)	0.0509
C70.55762 (19)0.4727 (2)0.62919 (15)0.0593C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.6668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	N22	1.0467 (2)	0.4419 (2)	1.16293 (14)	0.0748
C120.85219 (17)0.11981 (19)0.86907 (11)0.0470C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C7	0.55762 (19)	0.4727 (2)	0.62919 (15)	0.0593
C80.48183 (18)0.3526 (2)0.60371 (14)0.0587C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0580K170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C12	0.85219 (17)	0.11981 (19)	0.86907 (11)	0.0470
C130.99018 (19)0.1196 (2)0.89771 (13)0.0564C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0583H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.990220.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C8	0.48183 (18)	0.3526 (2)	0.60371 (14)	0.0587
C211.0108 (2)0.3743 (2)1.09855 (13)0.0557C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C13	0.99018 (19)	0.1196 (2)	0.89771 (13)	0.0564
C160.82107 (17)0.2886 (2)0.99060 (12)0.0502C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C21	1.0108 (2)	0.3743 (2)	1.09855 (13)	0.0557
C90.52799 (16)0.2176 (2)0.63462 (12)0.0469C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C16	0.82107 (17)	0.2886 (2)	0.99060 (12)	0.0502
C10.44722 (19)0.0937 (2)0.60105 (13)0.0583O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C9	0.52799 (16)	0.2176 (2)	0.63462 (12)	0.0469
O190.6651 (2)-0.18811 (16)0.67563 (13)0.0859C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C1	0.44722 (19)	0.0937 (2)	0.60105 (13)	0.0583
C30.6269 (2)-0.0640 (2)0.67100 (13)0.0580H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	O19	0.6651 (2)	-0.18811 (16)	0.67563 (13)	0.0859
H170.67420.20410.89610.0585*H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	C3	0.6269 (2)	-0.0640 (2)	0.67100 (13)	0.0580
H50.81330.31770.74920.0513*H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	H17	0.6742	0.2041	0.8961	0.0585*
H141.14050.20770.99020.0668*H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	H5	0.8133	0.3177	0.7492	0.0513*
H60.73390.54100.69990.0591*H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	H14	1.1405	0.2077	0.9902	0.0668*
H70.52510.56890.60820.0712*H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	H6	0.7339	0.5410	0.6999	0.0591*
H80.39770.35970.56590.0690*H131.04720.06190.86570.0672*	H7	0.5251	0.5689	0.6082	0.0712*
H13 1.0472 0.0619 0.8657 0.0672*	H8	0.3977	0.3597	0.5659	0.0690*
	H13	1.0472	0.0619	0.8657	0.0672*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16	0.7651	0.3500	1.0216	0.0599*
H20	0.8026	-0.1604	0.7606	0.1115*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0704 (8)	0.0638 (9)	0.0580 (8)	-0.0242 (7)	-0.0012 (7)	-0.0132 (6)
O20	0.1147 (13)	0.0427 (7)	0.0672 (9)	0.0149 (8)	-0.0142 (8)	0.0028 (6)
C17	0.0426 (8)	0.0604 (10)	0.0456 (8)	0.0014 (7)	0.0007 (6)	0.0007 (7)
C15	0.0523 (9)	0.0505 (9)	0.0386 (8)	-0.0006 (7)	-0.0028 (6)	0.0058 (7)
O18	0.0541 (8)	0.1130 (14)	0.0896 (12)	-0.0251 (9)	-0.0129 (8)	-0.0120 (11)
C5	0.0415 (7)	0.0436 (8)	0.0425 (8)	-0.0016 (6)	-0.0019 (6)	0.0015 (6)
C10	0.0391 (7)	0.0419 (8)	0.0367 (7)	-0.0017 (6)	0.0037 (6)	-0.0020 (6)
C14	0.0450 (9)	0.0691 (12)	0.0543 (10)	0.0069 (8)	-0.0063 (7)	0.0020 (9)
C4	0.0545 (9)	0.0387 (8)	0.0417 (8)	-0.0043 (6)	0.0015 (6)	-0.0025 (6)
C6	0.0536 (9)	0.0412 (8)	0.0541 (9)	-0.0015 (7)	0.0037 (7)	0.0007 (7)
C11	0.0651 (10)	0.0390 (8)	0.0477 (8)	0.0037 (7)	0.0032 (7)	0.0027 (7)
N22	0.0824 (13)	0.0750 (12)	0.0628 (11)	-0.0076 (10)	-0.0067 (9)	-0.0104 (9)
C7	0.0558 (10)	0.0549 (10)	0.0658 (12)	0.0124 (8)	0.0017 (9)	0.0105 (8)
C12	0.0539 (9)	0.0456 (8)	0.0396 (8)	0.0037 (7)	-0.0011 (7)	0.0044 (7)
C8	0.0425 (8)	0.0733 (13)	0.0571 (10)	0.0064 (8)	-0.0056 (7)	0.0069 (9)
C13	0.0512 (9)	0.0640 (12)	0.0522 (9)	0.0148 (8)	0.0002 (7)	-0.0020 (8)
C21	0.0598 (10)	0.0564 (11)	0.0481 (9)	-0.0038 (8)	-0.0038 (8)	0.0020 (8)
C16	0.0490 (9)	0.0585 (10)	0.0429 (8)	0.0048 (7)	0.0055 (7)	-0.0003 (7)
C9	0.0384 (7)	0.0589 (10)	0.0429 (8)	-0.0076 (7)	0.0032 (6)	-0.0036 (7)
C1	0.0498 (9)	0.0716 (12)	0.0526 (10)	-0.0162 (9)	0.0035 (8)	-0.0068 (9)
019	0.1348 (16)	0.0405 (8)	0.0770 (11)	-0.0089 (8)	-0.0074 (10)	-0.0063 (7)
C3	0.0797 (13)	0.0445 (9)	0.0488 (9)	-0.0144 (8)	0.0042 (9)	-0.0048 (7)

Geometric parameters (Å, °)

O2—C1	1.392 (3)	C14—H14	0.968
O2—C3	1.369 (3)	C4—C11	1.379 (2)
O20—C11	1.323 (2)	C4—C3	1.448 (2)
O20—H20	0.867	C6—C7	1.385 (3)
C17—C12	1.390 (2)	С6—Н6	0.952
C17—C16	1.378 (3)	C11—C12	1.481 (2)
С17—Н17	0.945	N22—C21	1.139 (3)
C15—C14	1.389 (3)	C7—C8	1.374 (3)
C15—C21	1.437 (3)	С7—Н7	0.987
C15—C16	1.389 (2)	C12—C13	1.389 (2)
O18—C1	1.195 (2)	C8—C9	1.392 (3)
C5-C10	1.401 (2)	C8—H8	0.945
C5—C6	1.373 (2)	C13—H13	0.945
С5—Н5	0.937	C16—H16	0.949
C10—C4	1.459 (2)	C9—C1	1.455 (2)
С10—С9	1.405 (2)	O19—C3	1.216 (2)
C14—C13	1.381 (3)		

C1 $O2$ $C3$	122.02(14)	C6 $C7$ $C9$	110.21(17)
	125.92 (14)	$C_0 - C_7 - C_8$	119.51 (17)
C11—O20—H20	105.7	С6—С/—Н/	120.2
C12—C17—C16	120.19 (16)	С8—С7—Н7	120.5
С12—С17—Н17	119.2	C11—C12—C17	120.05 (15)
С16—С17—Н17	120.6	C11—C12—C13	120.05 (16)
C14—C15—C21	121.41 (16)	C17—C12—C13	119.76 (16)
C14—C15—C16	120.14 (16)	С7—С8—С9	120.00 (16)
C21—C15—C16	118.44 (17)	С7—С8—Н8	121.1
C10—C5—C6	121.14 (14)	С9—С8—Н8	118.9
С10—С5—Н5	120.0	C12-C13-C14	120.23 (17)
С6—С5—Н5	118.9	C12—C13—H13	119.6
C5—C10—C4	124.28 (14)	C14—C13—H13	120.2
C5—C10—C9	116.86 (15)	C15—C21—N22	177.2 (2)
C4—C10—C9	118.73 (14)	C15—C16—C17	119.90 (16)
C15-C14-C13	119.74 (15)	С15—С16—Н16	119.1
C15-C14-H14	119.9	С17—С16—Н16	120.9
C13—C14—H14	120.3	C10—C9—C8	121.50 (16)
C10-C4-C11	125.67 (14)	C10—C9—C1	120.92 (17)
C10—C4—C3	117.75 (15)	C8—C9—C1	117.51 (16)
C11—C4—C3	116.56 (16)	C9—C1—O2	117.05 (16)
C5—C6—C7	121.10 (16)	C9—C1—O18	127.1 (2)
С5—С6—Н6	120.3	O2—C1—O18	115.75 (19)
С7—С6—Н6	118.6	C4—C3—O2	119.16 (17)
C4—C11—O20	122.23 (16)	C4—C3—O19	125.4 (2)
C4—C11—C12	126.33 (16)	O2—C3—O19	115.37 (17)
O20—C11—C12	111.24 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O20—H20…O19	0.87	1.74	2.523 (2)	149

